EXTRA PRACTICE - Exercises

Unit X - Exponential and Logarithmic Functions Part D - Solving Open Sentences Lesson 2 - Logarithm Equations

Solve each of the following logarithmic equations by rewriting them in more familiar exponential form. Be sure to check your answers in the original equation.

1. $\log _{3}(5 x+7)=2$
2. $\log _{5}(x+4)+\log _{5}(x-4)=2$
3. $\log _{3}(2 x-6)-\log _{3}(x+4)=2$
4. $\log x-\log (x+3)={ }^{-} 1$
5. $\log _{4}(2+x)-\log _{4}(3-5 x)=3$
6. $\log _{4}(8 x-6)=3$
7. $\log _{2}(8-2 x)=6$
8. $\log x+\log (x-9)=1$
9. $\log _{x}\left(\log _{3} 27\right)=3$
10. $\log _{5} \sqrt{x^{2}-9}=1$

Solve the following equations containing logarithms by considering them in exponential form. When necessary, round your answer to the nearest tenth.
11. $\log _{4} x=3$
12. $\log x=-3$
13. $\log _{5} 1=3 x-4$
14. $\log (\log x)=5$
15. $\log _{5}|x|=4$
16. $\log _{3}|5 x-7|=2$
17. $\log _{7} x=3$
18. $\log _{4} x=\frac{1}{2}$
19. $\log _{x} 27=\frac{3}{2}$
20. $\log _{x} 3=\frac{1}{3}$

Unit X - Exponential and Logarithmic Functions
 Part D - Solving Open Sentences Lesson 2 - Logarithm Equations

Solve each of the following logarithmic equations by rewriting them in more familiar exponential form. Be sure to check your answers in the original equation.

1. $x=\frac{2}{5}$
2. $x=\frac{13}{3}$
3. no solution
4. $x=\frac{1}{3}$
5. $x=\frac{190}{321}$
6. $x=\frac{35}{4}$
7. $x={ }^{-} 28$
8. $x=10$ Exponents do not exist that will raise a positive base, 10 , to a power that will result in a negative number, -1 or -10 .
9. $x=\sqrt[3]{3}$
10. $x= \pm \sqrt{34}$

Solve the following equations containing logarithms by considering them in exponential form. When necessary, round your answer to the nearest tenth.
11. $x=64$
12. $x=.001$
13. $x=\frac{4}{3}$
14. $x=10^{100,000}$
15. $x= \pm 625$
16. $x=\frac{16}{5},-\frac{2}{5}$
17. $x=343$
18. $x=2$
19. $x=9$
20. $x=27$

