VideoText Interactive

HomeSchool and Independent Study Sampler

Print Materials for “Algebra: A Complete Course”

Unit II, Part A, Lesson 4 – “Combinations”

Course Notes (2 pages)
Student WorkText (5 pages)
Solutions Manual (2 pages)
Quizzes – Forms A and B (4 pages)
Quiz Solutions (4 pages)

© 2006
COMBINATIONS

\[3w + 4 = 10\]

Add \(-4\)
\[3w + 4 + (-4) = 10 + (-4)\]
\[3w = 6\]

Multiply \(\frac{1}{3}\)
\[\frac{1}{3}(3w) = \frac{1}{3}(6)\]
\[w = \frac{6}{3}\] or \(2\)

Check
\[3(2) + 4 = 10\]
\[6 + 4 = 10\]
\[10 = 10\] True

\[S = \{2\}\]

Or ...

\[3w + 4 = 10\]
Multiply \(\frac{1}{3}\)
\[\frac{1}{3}(3w + 4) = \frac{1}{3}(10)\]
\[w + \frac{4}{3} = \frac{10}{3}\]
Add \(-\frac{4}{3}\)
\[w + \frac{4}{3} + \left(-\frac{4}{3}\right) = \frac{10}{3} + \left(-\frac{4}{3}\right)\]
\[w = \frac{6}{3}\] or \(2\) ✔
\[-6x - 2 \geq 40\]

Add 2

\[-6x - 2 + 2 \geq 40 + 2\]

Multiply \(\frac{1}{-6}\)

\[-\frac{1}{6}(-6x) \leq \frac{1}{-6}(42)\]

\[1x \leq \frac{42}{-6}\text{ or } -7 \checkmark\]

Check

\[-6(-10) - 2 \geq 40\]

\[60 - 2 \geq 40\]

\[58 \geq 40\text{ True}\]

\[S = \{x \mid x \leq -7\}\]
LESSON 4 Combinations

Objective: To be able to solve simple equations or inequalities by making 0’s and 1’s appropriately.

Important Terms:

"The Opposite Of" – a real number which has the same absolute value as a given number, but the opposite sign, so that the sum of the two numbers is 0. For example, the opposite of +3 is -3, because +3 + (-3) = 0.

Reciprocal – a real number (not equal to 0) which has the same sign as a given number but which, in fraction form, has the numerator and denominator interchanged, so that the product of the two numbers is 1. For example, the reciprocal of \(\frac{1}{3} \) is \(\frac{3}{1} \) because \(\frac{1}{3} \times \frac{3}{1} = \frac{3}{3} = 1 \) or 1.

Example 1: Find the solution set for the following open sentence by making the appropriate 0’s and 1’s.

\[3x - 8 = 34 \]

Solution: In this equation, we are trying to find appropriate values for “1” of the placeholder. That means we want only 1x, so we must make a “1” out of the 3 and a “0” out of the -8.
Example 1 cont'd:

Method 1
We make the "1" first by multiplying by $\frac{1}{3}$ (the reciprocal of 3 or $\frac{3}{1}$).

\[
3x - 8 = 34
\]

Mult. $\frac{1}{3}$

\[
\frac{1}{3}(3x - 8) = \frac{1}{3}(34)
\]

\[
x - \frac{8}{3} = \frac{34}{3}
\]

Now make a zero.

\[
\text{Add } \frac{8}{3}
\]

\[
x - \frac{8}{3} + \frac{8}{3} = \frac{3}{3} + \frac{8}{3}
\]

\[
x + 0 = \frac{42}{3}
\]

\[
x = 14
\]

We check this solution by substitution in the original equation.

\[
3(14) - 8 = 34
\]

\[
42 - 8 = 34
\]

\[
34 = 34 \quad \text{It checks.}
\]

The solution set is $S = \{14\}$.

Method 2
We make the "0" first by adding +8 (the opposite of -8).

\[
3x - 8 = 34
\]

Add +8

\[
3x - 8 + (+8) = 34 + (+8)
\]

\[
3x + 0 = 42
\]

\[
x = 42
\]

Now make a 1. Multiply by $\frac{1}{3}$ (the reciprocal of 3 or $\frac{3}{1}$).

Mult. $\frac{1}{3}$

\[
\frac{1}{3}(3x) = \frac{1}{3}(42)
\]

\[
\frac{3}{3}x = \frac{42}{3}
\]

\[
x = 14
\]
Example 1 cont’d:

We already know this is the correct answer.

Notice that it makes no difference whether we make the 1 or 0 first. Upon closer examination, however, you might prefer to make the 0 first as that may possibly eliminate some of the fractions which may occur in the solution process.

Example 2: Find the solution set for each of the following open sentences by making the appropriate 0’s and 1’s.

a. \(-3x + 1 < -26\)
b. \(\frac{3n}{4} - 6 \geq 3\)

Solution: a. We want to make a “0” out of the +1, so we add -1 (its opposite).

\[-3x + 1 < -26\]
Add -1

\[-3x + 1 + (-1) < -26 + (-1)\]

\[-3x < -27\]

We want to make a “1” out of the -3, so we multiply by \(\frac{1}{-3}\) (its reciprocal).

Mult. \(\frac{1}{3}\)

\(\frac{1}{3}(-3x) > \frac{1}{-3}(-27)\)

\(-x > -9\)

\(x < 9\)

Notice we reverse the relation symbol when we multiply an inequality by a negative number.

We can partially check this range of solutions by a sample substitution in the original inequality. 11 > 9, so we will try that sample.

\[-3(11) + 1 < -26\]

\[-33 + 1 < -26\]

\[-32 < -26\] It checks.

The solution set is as follows:
Example 2 cont’d:

b. We want to make a “0” out of the –6 so we add +6 (its opposite).

\[
\frac{3n}{4} - 6 \geq 3
\]

Add +6

\[
\frac{3n}{4} - 6 + (+6) \geq 3 + (+6)
\]

\[
\frac{3n}{4} + 0 \geq 9
\]

\[
\frac{3n}{4} \geq 9
\]

We want to make a “1” out of the \(\frac{3}{4}\), so we multiply by \(\frac{4}{3}\) (its reciprocal).

Mult. \(\frac{4}{3}\)

\[
\frac{4}{3} \left(\frac{3n}{4} \right) \geq \frac{4}{3} (9)
\]

\[
\frac{12n}{12} \geq \frac{36}{3}
\]

\[
1n \geq 12
\]

Again we partially check this range of solutions by a sample substitution in the original inequality. \(16 \geq 12\), so we will try that sample.

\[
\frac{3(16)}{4} - 6 \geq 3
\]

\[
\frac{48}{4} - 6 \geq 3
\]

\[
12 - 6 \geq 3
\]

\[
6 \geq 3
\]

It checks.

The solution set is as follows:
Lesson 4 – Exercises:

Find the solution set for each of the following open sentences by making the appropriate 0’s and 1’s.

1. \(2n - 1 = 5\)
2. \(\frac{x}{2} - 6 = 14\)
3. \(\frac{r}{4} + 8 = 7\)
4. \(3t + 5 = 29\)
5. \(3t + 8 > 20\)
6. \(4x - 12 < 16\)
7. \(\frac{n}{8} + 16 > 15\)
8. \(\frac{7x}{9} - 3 \geq 4\)
9. \(5c + 7 < 18\)
10. \(2w + 7 \leq 1\)
11. \(-6z - 7 \geq 11\)
12. \(5x + 4 \leq -6\)
13. \(\frac{2}{3}x - 5 < 7\)
14. \(\frac{3}{4}y - 2 < -8\)
15. \(4x + 13 \geq 5\)
16. \(2z - 1 > 7\)
17. \(-5m - 10 < 25\)
18. \(9y + 4 > -14\)
19. \(\frac{2m}{3} - 5 \geq 1\)
Lesson 4 – Combinations

1. \(2n - 1 = 5\)
 \(2n - 1 + 1 = 5 + 1\)
 \(2n + 0 = 6\)
 \(\frac{1}{2}(2n) = \frac{1}{2} \cdot 6\)
 \(\frac{1}{2} \cdot n = \frac{1}{2} \cdot 3\)
 \(n = 3\)
 \(S = \{3\}\)

2. \(\frac{3}{4} - 6 = 14\)
 \(\frac{3}{4} - 6 + 6 = 14 + 6\)
 \(\frac{3}{4} + 0 = 20\)
 \(\frac{3}{4} = 20\)
 \(\frac{3}{4} \cdot x = 20\)
 \(\frac{3}{4} \cdot \frac{1}{4} = \frac{3}{4} \cdot 20\)
 \(\frac{3}{4} \cdot x = 40\)
 \(1 \cdot x = 40\)
 \(x = 40\)
 \(S = \{40\}\)

3. \(\frac{3}{4} + 8 = 7\)
 \(\frac{3}{4} + 8 + 8 = 7 + 8\)
 \(\frac{3}{4} + 0 = 1\)
 \(\frac{3}{4} = 1\)
 \(\frac{3}{4} \cdot r = \frac{3}{4} \cdot (-1)\)
 \(\frac{3}{4} \cdot r = -4\)
 \(1 \cdot r = -4\)
 \(r = -4\)
 \(S = \{-4\}\)

4. \(3t + 5 = 29\)
 \(3t + 5 + 5 = 29 + 5\)
 \(3t + 0 = 24\)
 \(3t = 24\)
 \(\frac{3}{4} \cdot 3t = \frac{3}{4} \cdot 24\)
 \(\frac{3}{4} \cdot t = 6\)
 \(1 \cdot t = 8\)
 \(t = 8\)
 \(S = \{8\}\)

5. \(3t + 8 > 20\)
 \(3t + 8 + 8 > 20 + 8\)
 \(3t + 0 > 12\)
 \(3t > 12\)
 \(\frac{3}{4} (3t) > \frac{3}{4} \cdot 12\)
 \(\frac{3}{4} \cdot r > \frac{3}{4} \cdot 7\)
 \(1 \cdot r > 4\)
 \(r > 4\)
 \(S = \{r \mid r > 4\}\)

6. \(4x - 12 < 16\)
 \(4x - 12 + 12 < 16 + 12\)
 \(4x < 28\)
 \(4x < 28\)
 \(\frac{1}{2} (4x) < \frac{1}{2} \cdot 28\)
 \(\frac{1}{2} \cdot x < \frac{1}{2} \cdot 7\)
 \(1 \cdot x < 7\)
 \(x < 7\)
 \(S = \{x \mid x < 7\}\)

7. \(\frac{3}{4} + 16 > 15\)
 \(\frac{3}{4} + 16 + 16 > 15 + 16\)
 \(\frac{3}{4} + 0 > 7\)
 \(\frac{3}{4} > 7\)
 \(\frac{3}{4} \cdot n > \frac{3}{4} \cdot (-1)\)
 \(\frac{3}{4} \cdot n > -8\)
 \(1 \cdot n > -8\)
 \(n > -8\)
 \(S = \{n \mid n > -8\}\)

8. \(\frac{3}{8} - 3 \geq 4\)
 \(\frac{3}{8} - 3 + 3 \geq 4 + 3\)
 \(\frac{3}{8} = 7\)
 \(\frac{3}{8} + 0 \geq 7\)
 \(\frac{3}{8} \geq 7\)
 \(\frac{3}{8} \cdot x \geq \frac{3}{8} \cdot 7\)
 \(1 \cdot x \geq 7\)
 \(x \geq 7\)
 \(S = \{x \mid x \geq 7\}\)

9. \(5c + 7 < 18\)
 \(5c + 7 + 7 < 18 + 7\)
 \(5c + 0 < 11\)
 \(5c < 11\)
 \(\frac{1}{5} \cdot 5c < \frac{1}{5} \cdot 11\)
 \(\frac{1}{5} \cdot c < \frac{1}{5} \cdot 22\)
 \(1 \cdot c < 4\)
 \(c < 4\)
 \(S = \{c \mid c < 4\}\)

10. \(2w + 7 \leq 1\)
 \(-2w + 7 + 1 \leq 1 + 1\)
 \(2w + 0 \leq 6\)
 \(2w \leq 6\)
 \(\frac{1}{2} \cdot 2w \leq \frac{1}{2} \cdot 6\)
 \(\frac{1}{2} \cdot w \leq \frac{1}{2} \cdot 3\)
 \(1w \leq 3\)
 \(w \leq 3\)
 \(S = \{w \mid w \leq 3\}\)

11. \(-6z - 7 \geq 11\)
 \(-6z - 7 + 7 \geq 11 + 7\)
 \(-6z + 0 \geq 18\)
 \(-6z \geq 18\)
 \(\frac{1}{-6} (-6z) \leq \frac{1}{-6} (18)\)
 \(z \leq -3\)
 \(1 \cdot z \leq -3\)
 \(z \leq -3\)
 \(S = \{z \mid z \leq -3\}\)

12. \(5x + 4 \leq -6\)
 \(5x + 4 + 6 \leq -6 + 6\)
 \(5x + 0 \leq 0\)
 \(5x \leq 10\)
 \(\frac{1}{5} (5x) \leq \frac{1}{5} (10)\)
 \(x \leq 2\)
 \(1 \cdot x \leq 2\)
 \(x \leq 2\)
 \(S = \{x \mid x \leq 2\}\)

13. \(\frac{3}{4} x - 5 < 7\)
 \(\frac{3}{4} x - 5 + 5 < 7 + 5\)
 \(\frac{3}{4} x + 0 < 12\)
 \(\frac{3}{4} x < 12\)
 \(\frac{1}{4} \cdot \frac{3}{4} x < \frac{1}{4} \cdot 12\)
 \(\frac{1}{4} \cdot x \leq \frac{3}{4} \cdot 12\)
 \(1 \cdot x \leq 18\)
 \(x \leq 18\)
 \(S = \{x \mid x \leq 18\}\)

14. \(\frac{3}{4} y - 2 < 8\)
 \(\frac{3}{4} y - 2 + 2 < 8 + 2\)
 \(\frac{3}{4} y + 0 < 6\)
 \(\frac{3}{4} y < 6\)
 \(\frac{1}{4} \cdot \frac{3}{4} y < \frac{1}{4} \cdot 6\)
 \(\frac{1}{4} \cdot y < \frac{3}{4} \cdot 6\)
 \(1 \cdot y < 8\)
 \(y < 8\)
 \(S = \{y \mid y < 8\}\)

15. \(4x + 13 \geq 5\)
 \(4x + 13 + 13 \geq 5 + 13\)
 \(4x + 0 \geq 8\)
 \(4x \geq 8\)
 \(\frac{1}{4} (4x) \geq \frac{1}{4} (8)\)
 \(x \geq 2\)
 \(1 \cdot x \geq 2\)
 \(x \geq 2\)
 \(S = \{x \mid x \geq 2\}\)

16. \(2z - 1 > 7\)
 \(2z - 1 + 1 > 7 + 1\)
 \(2z + 0 > 8\)
 \(2z > 8\)
 \(\frac{1}{2} (2z) > \frac{1}{2} \cdot 8\)
 \(z > 4\)
 \(1 \cdot z > 4\)
 \(z > 4\)
 \(S = \{z \mid z > 4\}\)
17.
\[-5m - 10 < 25 \]
\[-5m + 10 < 25 + 10 \]
\[-5m + 0 < 35 \]
\[-5m < 35 \]
\[\frac{1}{3}(-5) > \frac{1}{3}(35) \]
\[\frac{1}{3} \cdot m > \frac{1}{3} \]
\[1 \cdot m > -7 \]
\[m > -7 \]
\[S = \{ m \mid m > -7 \} \]

18.
\[9y + 4 > -14 \]
\[9y + 4 + -4 > -14 + -4 \]
\[9y + 0 > -18 \]
\[9y > -18 \]
\[\frac{1}{9}(9y) > \frac{1}{9}(-18) \]
\[\frac{1}{9} \cdot y > \frac{-18}{9} \]
\[1 \cdot y > -2 \]
\[y > -2 \]
\[S = \{ y \mid y > -2 \} \]

19.
\[\frac{1}{3}p - 5 \geq 1 \]
\[\frac{1}{3}p - 5 + 5 \geq 1 + 5 \]
\[\frac{1}{3}p + 0 \geq 6 \]
\[\frac{1}{3}p \geq 6 \]
\[\frac{1}{3} \cdot m \geq 6 \]
\[\frac{1}{3} \cdot \frac{1}{3} \cdot m \leq \frac{1}{3} \cdot \frac{1}{3} \cdot 6 \]
\[\frac{1}{9} \cdot m \leq \frac{1}{9} \]
\[1 \cdot m \leq -9 \]
\[m \leq -9 \]
\[S = \{ m \mid m \leq -9 \} \]
For each of the following solution statements, give the solution set, using the proper set notation - roster or rule, and using a number line.

1. \(w = -3 \)
 \[S = \{ -3 \} \]

2. \(x = 2 \)
 \[S = \{ 2 \} \]

3. \(a > 1 \)
 \[S = \{ a \in \mathbb{R} \mid a > 1 \} \]

4. \(m \leq -2 \)
 \[S = \{ m \in \mathbb{R} \mid m \leq -2 \} \]
Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5. \(x + 7 = 15 \)

6. \(c - 7 = 12 \)

7. \(w - 4 > -7 \)

8. \(4x = 12 \)

9. \(-3n = -15 \)

10. \(3n < 30 \)

11. \(-4y \geq 12 \)

12. \(3x - 1 = 17 \)

13. \(\frac{4}{3}m + 1 < 25 \)
Unit II – First Degree Relations with One Placeholder
Part A – Basic Equations and Inequalities

Lesson 1 – Solution Statements and Solution Sets
Lesson 2 – First Type – Making Zeros
Lesson 3 – Second Type – Making Ones
Lesson 4 – Combinations

For each of the following solution statements, give the solution set, using the proper set notation – roster or rule, and using a number line.

1. \(y \geq -4 \)
 \(S = \{ \} \)

2. \(b < 0 \)
 \(S = \{ \} \)

3. \(x = 3 \)
 \(S = \{ \} \)

4. \(a = -1 \)
 \(S = \{ \} \)
Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5. \(5a = 30\)
6. \(x + 9 = 15\)
7. \(-3m < 15\)
8. \(m - 9 = 30\)
9. \(-4y = -28\)
10. \(5x + 2 = 32\)
11. \(f - 5 < -8\)
12. \(5x > 60\)
13. \(\frac{5}{2}n + 1 \geq 26\)
Unit II – First Degree Relations with One Placeholder
Part A – Basic Equations and Inequalities

Lesson 1 – Solution Statements and Solution Sets
Lesson 2 – First Type – Making Zeros
Lesson 3 – Second Type – Making Ones
Lesson 4 – Combinations

For each of the following solution statements, give the solution set, using the proper set notation – roster or rule, and using a number line.

1. \(w = -3 \) \(S = \{ -3 \} \)

2. \(x = 2 \) \(S = \{ 2 \} \)

3. \(a > 1 \) \(S = \{ a | a > 1 \} \)

4. \(m \leq -2 \) \(S = \{ m | m \leq -2 \} \)
Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5. \[x + 7 = 15 \]
 \[x + 7 + \cdot 7 = 15 + \cdot 7 \]
 \[x + 0 = 8 \]
 \[x = 8 \]
 \[S = \{8\} \]

6. \[c - 7 = 12 \]
 \[c - 7 + \cdot 7 = 12 + \cdot 7 \]
 \[c + 0 = 19 \]
 \[c = 19 \]
 \[S = \{19\} \]

7. \[w - 4 > -7 \]
 \[w - 4 + 4 > -7 + 4 \]
 \[w + 0 > -3 \]
 \[w > -3 \]
 \[S = \{w \mid w > -3\} \]

8. \[4x = 12 \]
 \[\frac{1}{4}(4x) = \frac{1}{4}(12) \]
 \[\frac{4}{4}x = \frac{12}{4} \]
 \[1x = 3 \]
 \[x = 3 \]
 \[S = \{3\} \]

9. \[-3n = -15 \]
 \[\frac{1}{-3}(-3n) = \frac{1}{-3}(-15) \]
 \[n = 5 \]
 \[S = \{5\} \]

10. \[3n < 30 \]
 \[\frac{1}{3}(3n) < \frac{1}{3}(30) \]
 \[n < 10 \]
 \[S = \{n \mid n < 10\} \]

11. \[-4y \geq 12 \]
 \[\frac{1}{-4}(-4y) \leq \frac{1}{-4}(12) \]
 \[\frac{-4}{-4}y \leq \frac{12}{-4} \]
 \[y \leq -3 \]
 \[S = \{y \mid y \leq -3\} \]

12. \[3x - 1 = 17 \]
 \[3x - 1 + 1 = 17 + 1 \]
 \[3x + 0 = 18 \]
 \[x = 6 \]
 \[S = \{6\} \]

13. \[\frac{4}{3}m + 1 < 25 \]
 \[\frac{4}{3}m + 1 - 1 < 25 - 1 \]
 \[\frac{4}{3}m < 24 \]
 \[m < 18 \]
 \[S = \{m \mid m < 18\} \]
Unit II – First Degree Relations with One Placeholder
Part A – Basic Equations and Inequalities

Lesson 1 - Solution Statements and Solution Sets
Lesson 2 - First Type - Making Zeros
Lesson 3 - Second Type - Making Ones
Lesson 4 - Combinations

For each of the following solution statements, give the solution set, using the proper set notation - roster or rule, and using a number line.

1. \(y \geq -4 \)
 \[S = \{ y \mid y \geq -4 \} \]

2. \(b < 0 \)
 \[S = \{ b \mid b < 0 \} \]

3. \(x = 3 \)
 \[S = \{ 3 \} \]

4. \(a = -1 \)
 \[S = \{ -1 \} \]
Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5. \[5a = 30 \]
 \[\frac{1}{5}(5a) = \frac{1}{5}(30) \]
 \[\frac{6}{5}a = \frac{30}{5} \]
 \[1a = 6 \]
 \[a = 6 \]
 \[S = \{ 6 \} \]

6. \[x + 9 = 15 \]
 \[x + 9 - 9 = 15 - 9 \]
 \[x + 0 = 6 \]
 \[x = 6 \]
 \[S = \{ 6 \} \]

7. \[-3m < 15 \]
 \[\frac{1}{3}(-3m) > \frac{1}{3}(15) \]
 \[-m > 5 \]
 \[m < -5 \]
 \[S = \{ m | m < -5 \} \]

8. \[m - 9 = 30 \]
 \[m - 9 + 9 = 30 + 9 \]
 \[m + 0 = 39 \]
 \[m = 39 \]
 \[S = \{ 39 \} \]

9. \[-4y = -28 \]
 \[\frac{1}{-4}(-4y) = \frac{1}{-4}(-28) \]
 \[-\frac{4}{4}y = -\frac{28}{-4} \]
 \[y = 7 \]
 \[S = \{ 7 \} \]

10. \[5x + 2 = 32 \]
 \[5x + 2 - 2 = 32 - 2 \]
 \[5x = 30 \]
 \[x = 6 \]
 \[S = \{ 6 \} \]

11. \[f - 5 < -8 \]
 \[f - 5 + 5 < -8 + 5 \]
 \[f + 0 < -3 \]
 \[f < -3 \]
 \[S = \{ f | f < -3 \} \]

12. \[5x > 60 \]
 \[\frac{1}{5}(5x) > \frac{1}{5}(60) \]
 \[\frac{5}{5}x > \frac{60}{5} \]
 \[x > 12 \]
 \[S = \{ x | x > 12 \} \]

13. \[\frac{5}{2}n + 1 \geq 26 \]
 \[\frac{5}{2}n + 1 - 1 \geq 26 - 1 \]
 \[\frac{5}{2}n \geq 25 \]
 \[\frac{2}{5} \left(\frac{5}{2}n \right) \geq \frac{2}{5} \left(25 \right) \]
 \[\frac{10}{10}n \geq \frac{50}{5} \]
 \[n \geq 10 \]
 \[S = \{ n | n \geq 10 \} \]