EXTRA PRACTICE — Exercises

Copyright ® 2003 by Videotext Interactive

Unit V – Second Degree Relations and Higher - Polynomials Part C – Solving Equations and Inequalities by Factoring Lesson 4 – Special Products - Perfect Square Trinomial

Find the indicated product for each of the following.

1.
$$(5y+4)(5y+4)$$

2.
$$(4a-7)(4a-7)$$

3.
$$(3a+2)(3a+2)$$

4.
$$(2x + 5y)^2$$

5.
$$(-3-7x)^2$$

6.
$$(xy+2)(xy+2)$$

7.
$$(3x^4 - 5y^3)^2$$

8.
$$(a^x + b^y)(a^x + b^y)$$

9.
$$(6c+2)^2$$

Solve the following polynomial equations recognizing the polynomials as perfect square trinomials and knowing that each can be rewritten as a product of two identical binomials.

10.
$$x^2 + 2x + 1 = 0$$

11.
$$p^2 + 36 = 12p$$

12.
$$4x^2 - 28x + 49 = 0$$

13.
$$\frac{1}{4}x^2 + 3x + 9 = 0$$

14.
$$1 - 6a + 9a^2 = 0$$

15.
$$4x^2 + 12x + 9 = 0$$

16.
$$\frac{4}{9}x^2 + \frac{16}{27}x + \frac{16}{81} = 0$$

17.
$$25x^2 - 20x + 4 = 0$$

18.
$$x^2 - \frac{3}{2}x + \frac{9}{16} = 0$$

EXTRA PRACTICE — Answer Key

Copyright ® 2003 by Videotext Interactive

Unit V – Second Degree Relations and Higher - Polynomials Part C – Solving Equations and Inequalities by Factoring Lesson 4 – Special Products - Perfect Square Trinomial

Find the indicated product for each of the following.

1.
$$25y^2 + 40y + 16$$

2.
$$16a^2 - 56a + 49$$

3.
$$9a^2 + 12a + 4$$

4.
$$4x^2 + 20xy + 25y^2$$

5.
$$9 + 42x + 49x^2$$

6.
$$x^2y^2 + 4xy + 4$$

7.
$$9x^8 - 30x^4y^3 + 25y^6$$

8.
$$a^{2x} + 2a^xb^y + b^{2y}$$

9.
$$36c^2 + 24c + 4$$

Solve the following polynomial equations recognizing the polynomials as perfect square trinomials and knowing that each can be rewritten as a product of two identical binomials.

10.
$$S = \{-1\}$$

11.
$$S = \{6\}$$

12.
$$S = \left\{ \frac{7}{2} \right\}$$

13.
$$S = \{ -6 \}$$

14.
$$S = \left\{ \frac{1}{3} \right\}$$

15.
$$S = \left\{ -\frac{3}{2} \right\}$$

16.
$$S = \left\{ -\frac{2}{3} \right\}$$

17.
$$S = \left\{ \frac{2}{5} \right\}$$

18.
$$S = \left\{ \frac{3}{4} \right\}$$