Unit V - Second Degree Relations and Higher - Polynomials
 Part C - Solving Equations and Inequalities by Factoring Lesson 3 - Special Products Difference of Squares

Find the indicated product for each of the following.

1. $(2 x+7)(2 x-7)$
2. $(6 x+5 a)(6 x-5 a)$
3. $(n+11)(n-11)$
4. $(4 y-5)(4 y+5)$
5. $(7 x-3)(7 x+3)$
6. $\left(6 c-5 d^{2}\right)\left(6 c+5 d^{2}\right)$
7. $\left(2 a^{2}-6\right)\left(2 a^{2}+6\right)$
8. $(5 a b-2)(5 a b+2)$
9. $\left(3 m^{2}+4 n\right)\left(3 m^{2}-4 n\right)$

Solve the following polynomial equations by recognizing the polynomials as the difference of two perfect squares and by knowing that each can be rewritten as a product of two binomials, one a sum and the other a difference.
10. $y^{2}=16$
11. $4 c^{2}-9=0$
12. $49-36 d^{2}=0$
13. $25 c^{2}=9$
14. $9=81 y^{2}$
15. $1-4 x^{2}=0$
16. $-4 x^{2}+25=0$
17. $\frac{1}{4} x^{2}-9=0$
18. $16 x^{2}=1$

Unit V - Second Degree Relations and Higher - Polynomials
 Part C - Solving Equations and Inequalities by Factoring Lesson 3 - Special Products Difference of Squares

Find the indicated product for each of the following.

1. $4 x^{2}-49$
2. $36 x^{2}-25 a^{2}$
3. $n^{2}-121$
4. $16 y^{2}-25$
5. $49 x^{2}-9$
6. $36 c^{2}-25 d^{4}$
7. $4 a^{4}-12$
8. $25 a^{2} b^{2}-4$
9. $9 m^{4}-16 n^{2}$

Solve the following polynomial equations by recognizing the polynomials as the difference of two perfect squares and by knowing that each can be rewritten as a product of two binomials, one a sum and the other a difference.
10. $S=\{4,-4\}$
11. $S=\left\{\frac{3}{2}, \quad \frac{-3}{2}\right\}$
12. $S=\left\{\begin{array}{cc}\frac{7}{6}, & \frac{7}{6}\end{array}\right\}$
13. $S=\left\{\frac{3}{5}, \frac{-3}{5}\right\}$
14. $S=\left\{\frac{1}{3}, \quad \frac{-1}{3}\right\}$
15. $S=\left\{\frac{1}{2}, \quad-\frac{1}{2}\right\}$
16. $S=\left\{\frac{5}{2}, \frac{-5}{2}\right\}$
17. $S=\{6,-6\}$
18. $S=\left\{\frac{1}{4}, \quad \frac{-1}{4}\right\}$

