EXTRA PRACTICE - Exercises

Copyright ${ }^{\circledR} 2003$ by Videotext Interactive

Unit VI - Second Degree Relations and Higher - Algebraic Fractions Part B - Solving Open Sentences Lesson 2 - Equations - Algebraic Case

Simplify each of the following complex fractions.

1. $\frac{2 b+3}{b-1}-\frac{10}{b^{2}-1}=\frac{2 b+3}{b+1}$
2. $\frac{x+1}{x-3}=\frac{3}{x}+\frac{12}{x^{2}-3 x}$
3. $\frac{4}{y^{2}-8 y+12}=\frac{y}{y-2}+\frac{1}{y-6}$
4. $\frac{2 a-9}{a-7}+\frac{a}{2}=\frac{5}{a-7}$
5. $\frac{a-3}{3 a}=\frac{1}{3 a^{2}+9 a}+\frac{1}{a+3}$
6. $\frac{2 x-3}{x-5}=\frac{x}{x+4}+\frac{20 x-37}{x^{2}-x-20}$
7. $\frac{8}{12+4 x-x^{2}}+\frac{x+1}{6-x}=\frac{5}{x+2}$
8. $\frac{x-2}{x+1}=\frac{x-3}{x^{2}-5 x-6}-\frac{2 x-7}{x-6}$
9. $\frac{7 y-20}{y^{2}-7 y+12}=\frac{y}{y-3}-\frac{2}{4-y}$

Unit VI - Second Degree Relations and Higher - Algebraic Fractions Part B - Solving Open Sentences Lesson 2 - Equations - Algebraic Case

Simplify each of the following complex fractions.

1. $b=1$

However, in this problem $b \neq 1$ or $b \neq{ }^{-} 1$
(Restricted values) There is no solution
3. ${ }^{-1} 1=y$ or $6=y$

However, in this problem $y \neq 6$ or $y \neq 2$.
(Restricted values) $y={ }^{-} 1$ is the only acceptable answer.
5. $a=5$ or $a=^{-} 2$

Restricted values are $a \neq 0, a \neq-3$
So, both solutions are acceptable.
7. $x={ }^{-} 10$ or $x=2$
x cannot equal 6 or ${ }^{-} 2$, (Restricted Values)
Therefore, the solution is $x=^{-} 10$ or $x=2$.
2. $x=-1$ or $x=3$

However, in this problem $x \neq 3$ or $x \neq 0$,
(Restricted values) $x=-1$ is the only acceptable answer.
4. $a=7$ or $a=-4$

In this problem $a \neq 7$,
(Restricted value) $a=-4$ is the only acceptable solution.
6. $x=5$

However, $x \neq 5$,
(Restricted value) No Solution!
8. $x=\frac{2}{3}$ or $x=4$
$x \neq{ }^{-1}$ or 6 , (Restricted Values)
Therefore, the solutions are $x=\frac{2}{3}$ or $x=4$.
9. $2=y$ or $7=y$

Restricted values are $y \neq 3$ and $y \neq 4$.
Therefore, the solution is $y=2$ or $y=7$.

