EXTRA PRACTICE — Exercises

Copyright ® 2003 by Videotext Interactive

Unit VI – Second Degree Relations and Higher - Algebraic Fractions Part B – Solving Open Sentences Lesson 2 – Equations - Algebraic Case

Simplify each of the following complex fractions.

1.
$$\frac{2b+3}{b-1} - \frac{10}{b^2 - 1} = \frac{2b+3}{b+1}$$

2. $\frac{x+1}{x-3} = \frac{3}{x} + \frac{12}{x^2 - 3x}$
3. $\frac{4}{y^2 - 8y + 12} = \frac{y}{y-2} + \frac{1}{y-6}$
4. $\frac{2a-9}{a-7} + \frac{a}{2} = \frac{5}{a-7}$
5. $\frac{a-3}{3a} = \frac{1}{3a^2 + 9a} + \frac{1}{a+3}$
6. $\frac{2x-3}{x-5} = \frac{x}{x+4} + \frac{20x-37}{x^2 - x - 20}$
7. $\frac{8}{12 + 4x - x^2} + \frac{x+1}{6-x} = \frac{5}{x+2}$
8. $\frac{x-2}{x+1} = \frac{x-3}{x^2 - 5x - 6} - \frac{2x-7}{x-6}$
9. $\frac{7y-20}{y^2 - 7y + 12} = \frac{y}{y-3} - \frac{2}{4-y}$

EXTRA PRACTICE — Answer Key

Copyright ® 2003 by Videotext Interactive

Unit VI – Second Degree Relations and Higher - Algebraic Fractions Part B – Solving Open Sentences Lesson 2 – Equations - Algebraic Case

Simplify each of the following complex fractions.

1. b = 1

However, in this problem $b \neq 1$ or $b \neq 1$ (Restricted values) There is no solution

- 3. $^{-}1 = y$ or 6 = yHowever, in this problem $y \neq 6$ or $y \neq 2$. (Restricted values) y = 1 is the only acceptable answer.
- 5. a = 5 or a = 2Restricted values are $a \neq 0, a \neq 3$ So, both solutions are acceptable.
- 7. x = 10 or x = 2

x cannot equal 6 or $^-2$, (Restricted Values) Therefore, the solution is $x=^-10$ or x = 2.

9. 2 = y or 7 = y

Restricted values are $y \neq 3$ and $y \neq 4$. Therefore, the solution is y = 2 or y = 7. 2. x=1 or x=3However, in this problem $x \neq 3$ or $x \neq 0$, (Restricted values) x=1 is the only acceptable answer.

4. a = 7 or a=⁻4
In this problem a ≠ 7,
(Restricted value) a =⁻4 is the only acceptable solution.

6. x = 5However, $x \neq 5$, (Restricted value) No Solution!

8.
$$x = \frac{2}{3}$$
 or $x = 4$
 $x \neq -1$ or 6, (Restricted Values)
Therefore, the solutions are $x = \frac{2}{3}$ or $x = 4$.