EXTRA PRACTICE — Exercises

Copyright ® 2003 by Videotext Interactive

Unit VII – Relations of Rational Number Degree Part E – The Complex Numbers as a Mathematical System Lesson 4 – Division

For each of the following, perform the indicated division by rationalizing the denominator, simplifying your result and writing it in the standard form of a complex number.

1.
$$(2-7i) \div (5+2i)$$

2.
$$(3+i) \div (4-i)$$

$$3. 10 \div (4 - 3i)$$

4.
$$(3-6i) \div (-2-5i)$$

5.
$$(4+3i) \div (3-4i)$$

6.
$$29 \div i$$

7.
$$1 \div (3 - i\sqrt{2})$$

8.
$$(3-5i) \div 4i$$

9.
$$(1+i) \div (1-i)$$

10.
$$8i \div (1 + 3i)$$

11.
$$5 \div 4i$$

12.
$$4i \div (3-4i)$$

13.
$$\left(1 - \sqrt{-5}\right) \div \left(2 + 4i\right)$$

14.
$$7 \div (-2i)$$

15.
$$(3+i)^{-1}$$

16.
$$(3 + \sqrt{-16}) \div (2 - 6i)$$

17.
$$6i \div 5i$$

18.
$$4\sqrt{3} \div \left(2\sqrt{3} + i\sqrt{3}\right)$$

19
$$(17-2i) \div (-17+3i)$$

20.
$$(1-2i) \div (-2-6i)$$

EXTRA PRACTICE — Answer Key

Copyright ® 2003 by Videotext Interactive

Unit VII – Relations of Rational Number Degree Part E – The Complex Numbers as a Mathematical System Lesson 4 – Division

For each of the following, perform the indicated division by rationalizing the denominator, simplifying your result and writing it in the standard form of a complex number.

1.
$$\frac{-4}{29} - \frac{39}{29}i$$

2.
$$\frac{11}{17} + \frac{7}{17}i$$

3.
$$\frac{8}{5} + \frac{6}{5}i$$

4.
$$\frac{24}{29} + \frac{27}{29}i$$

5.
$$0-i$$

6.
$$0 - 29i$$

7.
$$\frac{3}{11} + \frac{\sqrt{2}}{11}i$$

8.
$$\frac{5}{-4} + \frac{3}{-4}i$$

9.
$$0 + i$$

10.
$$\frac{12}{5} + \frac{4}{5}i$$

11.
$$0 + \frac{-5}{4}i$$

12.
$$\frac{-16}{25} + \frac{12}{25}i$$

13.
$$\frac{1-2\sqrt{5}}{10} - \frac{2(1+\sqrt{5})}{10}i$$

14.
$$0 + \frac{7}{2}i$$

15.
$$\frac{3}{10} - \frac{1}{10}i$$

16.
$$\frac{9}{20} + \frac{13}{20}i$$

17.
$$\frac{6}{5} + 0 \cdot i$$

18.
$$\frac{8}{5} + \frac{4}{5}i$$

19.
$$\frac{-295}{298} - \frac{17}{298}i$$

20.
$$\frac{1}{4} + \frac{1}{4}i$$