Unit VII - Relations of Rational Number Degree Part D - Problem-Solving with Relations Containing Radicals Lesson 1 - The "Distance" Relation

Solve each of the following for the indicated value by illustrating the problem on a coordinate plane and using the distance formula..

1. Find the distance between the two points $P_{1}\left({ }^{-} 3,-6\right)$ and $P_{2}(4,-4)$.
2. The co-ordinates of the vertices of triangle ABC are given by $\mathrm{A}(0,0), \mathrm{B}(8,4)$ and $\mathrm{C}(8,1)$. Is triangle ABC isosceles? (An isosceles triangle has two equal sides.)
3. Find all values of x such that the distance between $\mathrm{A}(1,-5)$ and $\mathrm{B}(x, 7)$ is 13 units.
4. Find the distance between the two points $P_{1}(-\sqrt{3},-4)$ and $P_{2}(3 \sqrt{3},-3)$
5. Find the coordinates of F if M is the midpoint of line segment $F G$ (in symbols, $\overline{\mathrm{FG}}$), where M has coordinates $\left(\frac{1}{2}, \frac{5}{2}\right)$ and G has coordinates $(4,-7)$.
Note: This problem requires the use of the midpoint formula, not the distance formula. Given $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$, the midpoint M has the coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Unit VII - Relations of Rational Number Degree Part D - Problem-Solving with Relations Containing Radicals Lesson 1 - The "Distance" Relation

Solve each of the following for the indicated value by illustrating the problem on a coordinate plane and using the distance formula..

1. $d=\sqrt{53}$
2. The triangle is not Isoceles. No two sides have the same number
3. $x=6,-4$ therefore, the points are $(6,7)$ and $(-4,7)$.
4. Distance is 7.
5. The coordinates are $(-3,2)$.
