EXTRA PRACTICE – Exercises

Copyright ® 2003 by Videotext Interactive

Unit VII – Relations of Rational Number Degree Part D – Problem-Solving with Relations Containing Radicals Lesson 1 – The "Distance" Relation

Solve each of the following for the indicated value by illustrating the problem on a coordinate plane and using the distance formula..

- 1. Find the distance between the two points $P_1(-3,-6)$ and $P_2(4,-4)$.
- 2. The co-ordinates of the vertices of triangle ABC are given by A (0,0), B (8,4) and C (8,1). Is triangle ABC isosceles? (An isosceles triangle has two equal sides.)
- 3. Find all values of x such that the distance between A (1,-5) and B (x,7) is 13 units.
- 4. Find the distance between the two points $P_1(-\sqrt{3},-4)$ and $P_2(3\sqrt{3},-3)$
- 5. Find the coordinates of F if M is the midpoint of line segment FG (in symbols, $\overline{\text{FG}}$), where M has coordinates $\left(\frac{1}{2}, \frac{5}{2}\right)$ and G has coordinates $\left(4, \frac{7}{2}\right)$. Note: This problem requires the use of the midpoint formula, not the distance formula. Given $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$, the midpoint M has the coordinates $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

EXTRA PRACTICE – Answer Key

Copyright ® 2003 by Videotext Interactive

Unit VII – Relations of Rational Number Degree Part D – Problem-Solving with Relations Containing Radicals Lesson 1 – The "Distance" Relation

Solve each of the following for the indicated value by illustrating the problem on a coordinate plane and using the distance formula..

1. $d = \sqrt{53}$

- 2. The triangle is not Isoceles. No two sides have the same number
- 3. x = 6, -4 therefore, the points are (6, 7) and (-4, 7).
- 4. Distance is 7.
- 5. The coordinates are (-3, 2).