EXTRA PRACTICE - Exercises

Copyright ${ }^{\circledR} 2003$ by Videotext Interactive

Unit VIII - Quadratic Equations

Part A - Solving Quadratic Equations of the form $a x^{2}+b x+c=0$ Lesson 4 - Checking Solutions

For each of the following relations, find the discriminant and state the nature of the solutions. Then solve the equation and check the solutions by examining their sum and product.

1. $4 x^{2}-20 x+25=0$
2. $9 y^{2}+12 y+2=0$
3. $4 n^{2}+4 n-3=0$
4. $1=8 n-4 n^{2}$
5. $-t^{2}+6 t-10=0 \quad$ 6. $9 t^{2}-6 t+4=0$

Unit VIII - Quadratic Equations
 Part A - Solving Quadratic Equations of the form $a x^{2}+b x+c=0$ Lesson 4 - Checking Solutions

For each of the following relations, find the discriminant and state the nature of the solutions. Then solve the equation and check the solutions by examining their sum and product.

1. Discriminant $=0$

Two equal rational roots
$x=\frac{5}{2}$
Sum $=5$
Product $=\frac{25}{4}$
3. Discriminant $=64$

Perfect square >0;
Two different rational roots
$n=\frac{1}{2}, \frac{3}{2}$
Sum $={ }^{-} 1$
Product $=\frac{-3}{4}$
5. Discriminant $=-4$

Two different complex roots
$t=3-\mathrm{i}, 3+\mathrm{i}$
Sum $=6$
Product $=10$
2. Discriminant $=72$

Non - perfect square >0;
Two different irrational roots
$y=\frac{-2 \pm \sqrt{2}}{3}$
Sum $=\frac{-4}{3}$
Product $=\frac{2}{9}$
4. Discriminant $=48$

Non - perfect square >0;
Two different irrational roots
$n=\frac{2 \mp \sqrt{3}}{2}$ or $\frac{-2 \pm \sqrt{3}}{-2}$
Sum $=2$
Product $=\frac{1}{4}$
6. Discriminant $={ }^{-} 108$

Two different complex roots
$t=\frac{-1+i \sqrt{3}}{3}, \frac{-1-i \sqrt{3}}{3}$
Sum $=\frac{-2}{3}$
Product $=\frac{4}{9}$

