EXTRA PRACTICE — Exercises

Copyright ® 2003 by Videotext Interactive

Unit IV – First Degree Relations with Three or More Placeholders Part B – Special Cases Lesson 2 – Infinite Number of Solutions - Dependent

Solve each of the following systems and classify them as dependent or independent.

1. $x + y - z = 2$	2. $2x + y - z = 3$
6x + y + z = 4	4x - y + 4z = 0
4x - y + 3z = 0	$^{-}3y + 2z = 6$

3. $2x - 3y + z = 8$	4.	<i>x</i> +	z = 2
10x + y - z = 4		y +	z = 0
4x + 2y - z = 6		x + y	= 2

5.
$$2x - 2y + 3z = 5$$

 $x + 2y - z = 1$
 $5x + 2y - 5z = 9$

EXTRA PRACTICE — Answer Key

Copyright ® 2003 by Videotext Interactive

Unit IV – First Degree Relations with Three or More Placeholders Part B – Special Cases Lesson 2 – Infinite Number of Solutions - Dependent

Solve each of the following systems and classify them as dependent or independent.

1. True Statement

Dependent System

$$S = (x, y, z) \begin{vmatrix} x + y - z &= 2 \\ 6x + y + z &= 4 \\ 4x - y + 3z &= 0 \end{vmatrix}$$

2. Independent System $S = \{(2, -4, -3)\}$

3. True Statement

S

Dependent System

$$= (x, y, z) \begin{vmatrix} 2x - 3y + z = 8 \\ 10x + y - z = 4 \\ 4x + 2y - z = 6 \end{vmatrix}$$

4. Independent System $S = \{(2, 0, 0)\}$

5. True Statement

Dependent System

$$S = (x, y, z) \begin{vmatrix} 2x - 2y + 3z = 5 \\ x + 2y - z = 1 \\ -5x + 2y - 5z = 9 \end{vmatrix}$$