Unit III - First Degree Relations with Two Placeholders Part C - Finding Relations For Given Solution Sets Lesson 4 - Special Cases - Given Parallel or Perpendicular Lines

Find a relation for each of the following in the form $y=m x+b$ which has a solution set line parallel to the line for the given equation, and contains the given point (solution).

1. It is parallel to the line for $4 x+3 y=15$.

It contains the point $(5,1)$.
2. It is parallel to the line for $3 x-5 y=10$.

It contains the point $(-2,-3)$.
3. It is parallel to the line for $4 y-6=2$.

It contains the point ($-3,-6$).
4. It is parallel to the line for $3 x-7=14$.

It contains the point $(-5,3)$.

Find a relation for each of the following in the form $y=m x+b$ which has a solution set line perpendicular to the line for the given equation, and contains the given points (solution).
5. It is perpendicular to the line for $y=\frac{2}{3} x-4$.

It contains the point (4, 2).
6. It is perpendicular to the line for $4 y+3 x=8$.

It contains the point $(-5,-1)$.
7. It is perpendicular to the line for $5=3 x-4$.

It contains the point $(-5,-4)$.
8. It is perpendicular to the line for $-x-3 y=15$.

It contains the point (3, 2).

Unit III - First Degree Relations with Two Placeholders Part C - Finding Relations For Given Solution Sets Lesson 4 - Special Cases - Given Parallel or Perpendicular Lines

Find a relation for each of the following in the form $y=m x+b$ which has a solution set line parallel to the line for the given equation, and contains the given point (solution).

1. $y=\frac{-4}{3} x+\frac{23}{3}$
2. $y=\frac{3}{5} x-\frac{9}{5}$
3. $y=-6$
4. $x=-5$

Find a relation for each of the following in the form $y=m x+\mathrm{b}$ which has a solution set line perpendicular to the line for the given equation, and contains the given points (solutions).
5. $y=\frac{-3}{2} x+8$
6. $y=\frac{-4}{3} x+\frac{17}{3}$
7. $y=-4$
8. $y=3 x-7$

