EXTRA PRACTICE - Exercises

Copyright ® 2003 by Videotext Interactive

Unit I – The Structure of Mathematics Part B – Further Investigation of Number Symbols Lesson 1– The Development of Our Number System

Tell if:

a. addition b. subtraction c.multiplication d. division

are well defined operations in each of the following sets. If yes, explain why. If not, give an example to show why not.

- 1. $\{\dots^{-9}, -6, -3, 0, 3, 6, 9, \dots\}$
- 2. $\{\dots^{-8}, -6, -4, -2, 0\}$
- 3. $\{\dots, \frac{4}{3}, \frac{3}{3}, \frac{2}{3}, \frac{1}{3}, \frac{0}{3}, \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{5}{3}, \dots\}$
- 4. $\{\dots^{-3}, 2, 1, 0, 1, 2, 3\dots\}$
- 5. In the following set, find: a. the Integers
 - b. the Natural Numbers
 - c. the Rational Numbers
 - d. the Whole Numbers
 - e. the Irrational Numbers

$$-\frac{2}{3}$$
, 4.121221222..., $\overline{7}$, 0, 38, π , $\overline{300}$, $\frac{5}{8}$, $\sqrt{3}$, $\overline{\frac{19}{7}}$, 57, $\frac{41}{41}$, 6. $\overline{31}$

EXTRA PRACTICE — Answer Key

Copyright ® 2003 by Videotext Interactive

Unit I – The Structure of Mathematics Part B – Further Investigation of Number Symbols Lesson 1– The Development of Our Number System

Tell if:

a. addition b. subtraction c.multiplication d. division

are well defined operations in each of the following sets. If yes, explain why. If not, give an example to show why not.

- 1. a. Yes (Answers will vary) Adding Multiples of three gives an integral multiple of three
 - b. Yes (Answers will vary) Subtracting Multiples of three gives an integral multiple of three
 - c. Yes (Answers will vary) Multiplying Multiples of three gives an integral multiple of three
 - d. No (Answers will vary) $9 \div 6=3/2$ and 3/2 is not an integral multiple of three
- 2. a. Yes (Answers will vary) Adding Negative integral multiples of two gives negative integral multiples of two
 - b. No (Answers will vary) 0 8 = 8, not a negative integral multiple of two
 - c. No (Answers will vary) $(-4) \bullet (-6) = 24$, not a negative integral multiple of two
 - d. No (Answers will vary) $(-6) \div (-2) = 3$, not a negative integral multiple of two
- 3. a. Yes (Answers will vary) Adding thirds gives thirds
 - b. Yes (Answers will vary) Subtracting thirds gives thirds
 - c. No (Answers will vary) $\frac{-2}{3} \cdot \frac{4}{3} = \frac{-8}{9}$ and $\frac{-8}{9}$ is not in the set of whole thirds
 - d. No (Answers will vary) $\frac{-4}{3} \div \frac{0}{3} = \frac{4}{3} \cdot \frac{3}{0} = \frac{4}{0}$ This will not give an answer. A second example is $\frac{2}{3} \div \frac{4}{3} = \frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}$ and $\frac{1}{2}$ is not in the set of whole thirds.
- 4. a. Yes (Answers will vary) Adding Integers gives Integers
 - b. Yes (Answers will vary) Subtracting Integers gives Integers
 - c. Yes (Answers will vary) Multiplying Integers gives Integers
 - d. No (Answers will vary) $3 \div 2 = -3/2$ or -1.5 and these answers are not integers.

```
5. a. {-7, 0, 38, -300, 57, <sup>41</sup>/<sub>41</sub>}
b. {38, 57, <sup>41</sup>/<sub>41</sub>}
```

- c. $\{-2/3, -7, 0, 38, -300, 5/8, -19/7, 57, 41/41\}$
- d. $\{0, 38, 57, \frac{41}{41}\}$
- e. {4.121221222..., π , $\sqrt{3}$ }