# Unit II - First Degree Relations with One Placeholder Part D - Systems of Equations and Inequalities Lesson 3 - Absolute Value Equal to a Positive Number (or) 

Find the solution set for each of the following absolute value relations and show the solution set on a number line and in set notation.

1. $-4|4 y+5|=-68$
2. $\quad|2.5 x-8|=10$
3. $13+|4-7 x|=5$
4. $2|x+(x+2)|=23$
5. $2|2 x-7|+11=25$
6. $\quad\left|\frac{4-5 x}{2}\right|=7$
7. $|7 x-2|=x+4$

8*. $\quad|5 p+7|=|4 p+3|$

9*. $\quad\left|\frac{6-8 x}{5}\right|=\left|\frac{7+3 x}{2}\right|$

* Note: Sometimes equations have two absolute value expressions. For example, if $|a|=|b|$, then a and $b$ are the same distance from zero. And, if $a$ and $b$ are the same distance from zero, then they are either the same number or they are opposites of each other. (i.e., $a=b$ or $a=-b$ )


# Unit II - First Degree Relations with One Placeholder Part D - Systems of Equations and Inequalities Lesson 3 - Absolute Value Equal to a Positive Number (or) 

Find the solution set for each of the following absolute value relations and show the solution set on a number line and in set notation.

1. $\mathrm{S}=\left\{\frac{-11}{2}, 3\right\}$

2. $\quad S=\left\{\frac{-4}{5}, \frac{36}{5}\right\}$

3. $S=\{\quad\}$ (absolute values are never negative)

4. $\mathrm{S}=\left\{\frac{-27}{4}, \frac{19}{4}\right\}$

5. $S=\{7,0\}$

6. $\mathrm{S}=\left\{-2, \frac{18}{5}\right\}$

7. $\mathrm{S}=\left\{1, \frac{-1}{4}\right\}$

8*. $\quad S=\left\{-4, \frac{-10}{9}\right\}$


9*. $\quad \mathrm{S}=\left\{\frac{-23}{31}, 47\right\}$


* Note: Sometimes equations have two absolute value expressions. For example, if $|a|=|b|$, then a and $b$ are the same distance from zero. And, if $a$ and $b$ are the same distance from zero, then they are either the same number or they are opposites of each other. (i.e., $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$ )

