Unit II - First Degree Relations with One Placeholder Part D - Systems of Equations and Inequalities Lesson 1 - Compound Sentences with "and"

Find the solution set for each of the following compound sentences (systems) and show those solution sets both on a number line and in set notation.

1. $-2 \leq 3 x+10$ and $5>2 x-3$
2. $7-6 x \leq 19$ and $19-5 x \leq 4$
3. $x+5>8$ and $7 x<-14$
4. $1 \leq 6-5 x<16$
5. $2 m+2(3 m-6) \leq 40$ and $m>0$ and $0<3 m-6$
$6 \quad 3 x-10<5 x+2<3 x+4$
6. $18<5 t+6<50$ and t is an even integer
7. $-0.7 \leq 3 x-4.3 \leq 8$
8. $8<4 x-7<22$ and x is an odd integer
9. $4 x+2(6 x-8)<100$ and $x>0$ and $4 x+8>0$

EXTRA PRACTICE - Answer Key

Copyright ${ }^{\circledR} 2003$ by Videotext Interactive

Unit II - First Degree Relations with One Placeholder Part D - Systems of Equations and Inequalities Lesson 1 - Compound Sentences with "and"

Find the solution set for each of the following compound sentences (systems) and show those solution sets both on a number line and in set notation.

1. $\mathrm{S}=\left\{x \mid x \geq^{-} 4\right.$ and $\left.x<4\right\}$

$$
S=\{x \mid-4 \leq x<4\}
$$

2. $\mathrm{S}=\left\{x \mid x \geq^{-} 2\right.$ and $\left.x \geq 3\right\}$
$\mathrm{S}=\{x \mid x \geq 3\}$

3. $\mathrm{S}=\{x \mid x>3$ and $x<-2\}$
$\mathrm{S}=\{\quad\}$

4. $\mathrm{S}=\{x \mid x>-2$ and $x \leq 1\}$
$\mathrm{S}=\{x \mid-2<x \leq 1\}$

5. $\quad \mathrm{S}=\left\{m \left\lvert\, m \leq \frac{13}{2}\right.\right.$ and $m>0$ and $\left.m>2\right\}$

6

$$
\begin{aligned}
& \mathrm{S}=\{x \mid x>-6 \text { and } x<1\} \\
& \mathrm{S}=\{x \mid-6<x<1\}
\end{aligned}
$$

7. $\quad \mathrm{S}=\left\{t \left\lvert\, t>\frac{12}{5}\right.\right.$ and $t<\frac{44}{5}$ and t is an even integer $\}$ $S=\{4,6,8\}$
8. $\quad \mathrm{S}=\left\{x \left\lvert\, \frac{6}{5} \leq x\right.\right.$ and $\left.x \leq \frac{41}{10}\right\}$

9. $\quad \mathrm{S}=\left\{x \left\lvert\, \frac{15}{4}<x\right.\right.$ and $x<\frac{29}{4}$ and x is odd $\}$

10. $\quad \mathrm{S}=\left\{x \left\lvert\, x<\frac{29}{4}\right.\right.$ and $x>0$ and $\left.x>-2\right\}$

