Unit II - First Degree Relations with One Placeholder Part C - Special Cases of Equations and Inequalities Lesson 2 - Infinite Numbers of Solutions

Find the solution set for each of the following relations. If the solution set is infinite, indicate that in set notation

1. $13-(3 c+2) \geq 2(c+2)-5 c$
2. $-8(2 x+3)+6(4-5 x) \geq 2(1-7 x)-4(4+6 x)$
3. $3-2[4 x-(3-x)]=x-2-11(x-1)$
4. $-2(x-5) \leq 6(x+7)-8\left(x-\frac{1}{2}\right)$
5. $-42 x+45=3[7-2(7 x-4)]$
$6 \quad \frac{1}{3} y+\frac{1}{4}=\frac{1}{2} y+0.25-\frac{1}{6} y$
6. $3(2-5 x)+2 x>-2(4-2 x)-17 x$
7. $5(4 y-2)-7=15 y-17+5 y$
8. $a+(a-3) \leq 3 a+2-(a+1)$
9. $3(m+2)-5(m-3)=-2 m+21$

Copyright © ${ }^{\circledR} 2003$ by Videotext Interactive

Unit II - First Degree Relations with One Placeholder Part C - Special Cases of Equations and Inequalities Lesson 2 - Infinite Numbers of Solutions

Find the solution set for each of the following relations. If the solution set is infinite, indicate that in set notation

1. $\mathrm{S}=\left\{c \left\lvert\, c \leq \frac{57}{5}\right.\right\}$
2. $\quad \mathrm{S}=\left\{x \left\lvert\, x \leq \frac{7}{4}\right.\right\}$
3. $9=9$ True $S=\{x \mid x$ is any real number $\}$
4. $10 \leq 46$ True $\mathrm{S}=\{x \mid x$ is any real number $\}$
5. $45=45$ True $\mathrm{S}=\{x \mid x$ is any real number $\}$
$6 \quad \frac{1}{4}=\frac{1}{4} \quad$ True $\quad S=\{x \mid x$ is any real number $\}$
6. $6>^{-8}$ True $\mathrm{S}=\{x \mid x$ is any real number $\}$
7. $-17=^{-1} 17 \quad$ True $\mathrm{S}=\{x \mid x$ is any real number $\}$
8. $\quad-3 \leq 1 \quad$ True $\mathrm{S}=\{x \mid x$ is any real number $\}$
9. $21=21 \quad$ True $S=\{x \mid x$ is any real number $\}$
