EXTRA PRACTICE - Exercises

Unit II - First Degree Relations with One Placeholder Part A - Basic Equations and Inequalities Lesson 1 - Solution Statements and Solution Sets (page1)

For each of the following solution statements, give the solution set using set notation (roster if possible) and using the given number line.

1. $x=\frac{-5}{2} \quad S=\{\quad\}$

2. $m=5$
$S=\{$
\}

3. $y=\frac{5}{3}$
$S=\{$

4. $v={ }^{-} 6$
$S=\{$

5. $f=\pi$
$S=\{$
\}

For each of the folloring solution statements, give the solution set using set notation with the rule method and also using a number line.
6. $m>^{-} 3 \quad S=$
$=\{\quad\}$

7. $x \leq 4 \quad S=\{$

8. $p \geq 0$
$S=\{$

9. $c \leq 1$
$S=\{$

10. $t>5$
$S=\{$

11. $a \leq \frac{5}{2}$
$S=\{$

12. $y \geq \frac{-7}{3} \quad \mathrm{~S}=\{\quad\}$

13. $r<9$
$S=\{$

14. $v>-6$
$S=\{$

15. $e \geq 1.75$
$S=\{$

Copyright $\circledR^{\circledR} 2003$ by Videotext Interactive

Unit II - First Degree Relations with One Placeholder Part A - Basic Equations and Inequalities Lesson 1 - Solution Statements and Solution Sets (page1)

For each of the following solution statements, give the solution set using set notation (roster if possible) and using the given number line.
1.

2. $S=\{5\}$

3. $S=\{$
$\frac{5}{3}$

4. $S=\left\{\begin{array}{ll} & -6\end{array}\right\}$

5. $S=\{\pi\}$

EXTRA PRACTICE - Answer Key

Copyright ${ }^{\circledR} 2003$ by Videotext Interactive Unit II, Part A, Lesson 1 (page 2)

For each of the folloring solution statements, give the solution set using set notation with the rule method and also using a number line.
6. $\mathrm{S}=\left\{m \mid m>^{-} 3\right\}$

7. $S=\{x \mid x \leq 4\}$

8. $\mathrm{S}=\{p \mid p \geq 0\}$

9. $\mathrm{S}=\{c \mid c \leq 1\}$

10. $\mathrm{S}=\{t \mid t>5\}$

11. $\mathrm{S}=\left\{a \left\lvert\, a \leq \frac{5}{2}\right.\right\}$

12. $\mathrm{S}=\left\{y \left\lvert\, y \geq \frac{-7}{3}\right.\right\}$

13. $\mathrm{S}=\{r \mid r>9\}$

14. $\mathrm{S}=\{v \mid v>-6\}$

15. $\mathrm{S}=\{e \mid e \geq 1.75\}$

