
VideoText Interactive

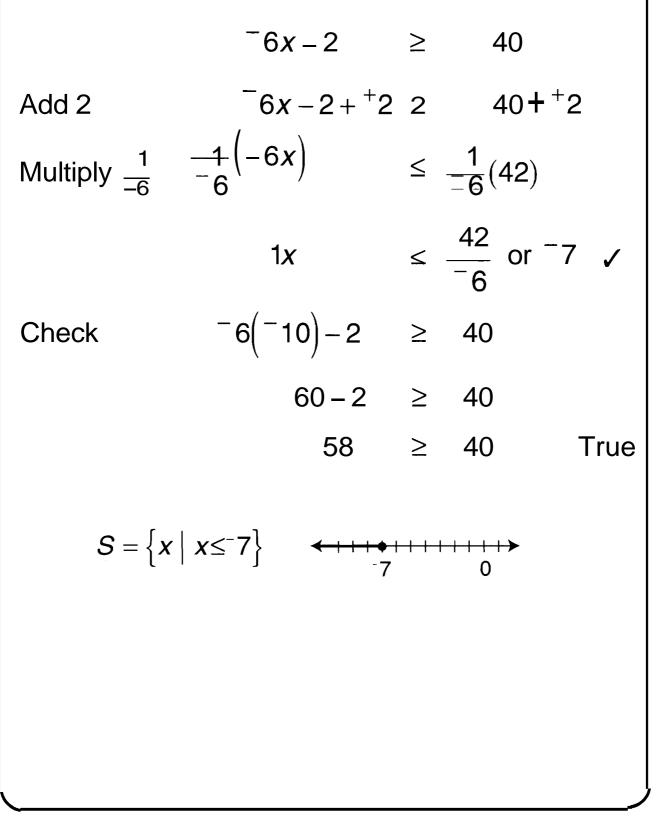
HomeSchool and Independent Study Sampler

Print Materials for "Algebra: A Complete Course"

Unit II, Part A, Lesson 4 – "Combinations"

Course Notes (2 pages) Student WorkText (5 pages) Solutions Manual (2 pages) Quizzes – Forms A and B (4 pages) Quiz Solutions (4 pages) COURSE NOTE 51

Add $\frac{-4}{3}$ $w + \frac{4}{3} + \frac{-4}{3} - \frac{10}{3} + \frac{-4}{3}$


W

Unit II, Part A, Lesson 4a

 $=\frac{6}{3}$ or $2\checkmark$

COURSE NOTE 52

VideoText Interactive Inc.

Unit II, Part A, Lesson 4b

Part A – Basic Equations and Inequalities

LESSON 4 Combinations

Objective: To be able to solve simple equations or inequalities by making 0's and 1's appropriately.

Important Terms:

- **''The Opposite Of''** a real number which has the same absolute value as a given number, but the opposite sign, so that the sum of the two numbers is 0. For example. the opposite of +3 is -3, because +3 + (-3) = 0.
- **Reciprocal** a real number (not equal to 0) which has the same sign as a given number but which, in fraction form, has the numerator and denominator interchanged, so that the product of the two numbers is 1. For example, the reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ because $\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{3}{2} = \frac{9}{6}$ or 1.

Example 1: Find the solution set for the following open sentence by making the appropriate 0's and 1's.

$$3x - 8 = 34$$

Solution: In this equation, we are trying to find appropriate values for "1" of the placeholder. That means we want only 1x, so we must make a "1" out of the 3 and a "0" out of the -8.

Example 1 cont'd:

Method 1 We make the "1" first by multiplying by $\frac{1}{3}$ (the reciprocal of 3 or $\frac{3}{1}$).

$$3x - 8 = 34$$

Mult.
$$\frac{1}{3}$$
 $\frac{1}{3}(3x-8) = \frac{1}{3}(34)$
 $1x - \frac{8}{3} = \frac{34}{3}$

Now make a zero.

Add
$$\frac{8}{3}$$
 $1x - \frac{8}{3} + \frac{8}{3} = \frac{3}{3} + \frac{8}{3}$
 $1x + 0 = \frac{42}{3}$
 $1x = 14$

We check this solution by substitution in the original equation.

$$3(14) - 8 = 34$$

 $42 - 8 = 34$
 $34 = 34$ It checks

The solution set is $S = \{ 14 \}$.

Method 2

We make the "0" first by adding +8 (the opposite of -8).

$$3x - 8 = 34$$
Add +8 $3x - 8 + (+8) = 34 + (+8)$
 $3x + 0 = 42$
 $3x = 42$
Now make a 1. Multiply by $\frac{1}{3}$ (the reciprocal of 3 or $\frac{3}{1}$).
Mult. $\frac{1}{3}$ $\frac{1}{3}(3x) = \frac{1}{3}(42)$
 $\frac{3}{3}x = \frac{42}{3}$
 $1x = 14$

Example 1 cont'd:

We already know this is the correct answer.

Notice that it makes no difference whether we make the 1 or 0 first. Upon closer examination, however, you might prefer to make the 0 first as that may possibly eliminate some of the fractions which may occur in the solution process.

Example 2: Find the solution set for each of the following open sentences by making the appropriate 0's and 1's.

a.
$$-3x + 1 < -26$$
 b. $\frac{3n}{4} - 6 \ge 3$

Solution: a. We want to make a "0" out of the +1, so we add -1 (its opposite).

$$-3x + 1 < -26$$
Add -1
$$-3x + 1 + (-1) < -26 + (-1)$$

$$-3x < -27$$

We want to make a "1" out of the -3, so we multiply by $\frac{1}{-3}$ (its reciprocal).

Mult.
$$\frac{1}{-3}$$
 $\frac{1}{-3}(-3x) > \frac{1}{-3}(-27)$
 $\frac{-3}{-3}x > \frac{-27}{-3}$
 $1x > 9$

Notice we reverse the relation symbol when we multiply an inequality by a negative number.

We can partially check this range of solutions by a sample substitution in the original inequality. 11 > 9, so we will try that sample.

$$-3(11) + 1 < -26$$

 $-33 + 1 < -26$
 $-32 < -26$ Itchecks.

The solution set is as follows:

Example2 cont'd:

b. We want to make a "0" out of the -6 so we add +6 (its opposite).

$$\frac{3n}{4} - 6 \ge 3$$
Add +6
$$\frac{3n}{4} - 6 + (+6) \ge 3 + (+6)$$

$$\frac{3n}{4} + o2 = 9$$

$$\frac{3n}{4} = 2 = 9$$

We want to make a "1" out of the $\frac{3}{4}$, so we multiply by $\frac{4}{3}$ (its reciprocal).

Mult.
$$\frac{4}{3}$$
 $\frac{4}{3}\left(\frac{3n}{4}\right) \ge \frac{4}{3}(9)$
 $\frac{12}{12}n \ge \frac{36}{3}$
 $1n \ge 12$

Again we partially check this range of solutions by a sample substitution in the original inequality. $16 \ge 12$, so we will try that sample.

$$\frac{3(16)}{4} - 6 \ge 3$$

$$\frac{48}{4} - 6 \ge 3$$

$$12 - 6 \ge 3$$

$$6 \ge 3$$
 It checks.

The solution set is as follows:

Lesson 4 – Exercises:

Find the solution set for each of the following open sentences by making the appropriate 0's and 1's.

1. $2n - 1 = 5$	2. $\frac{x}{2} - 6 = 14$	3. $\frac{r}{4} + 8 = 7$
4. $3t + 5 = 29$	5. $3t + 8 > 20$	6. $4x - 12 < 16$
7. $\frac{n}{8} + 16 > 15$	8. $\frac{7x}{9} - 3 \ge 4$	9. 5 <i>c</i> + 7 < 18
10. $2w + 7 \le 1$	11. $-6z - 7 \ge 11$	12. $5x + 4 \le -6$
13. $\frac{2}{3}x - 5 < 7$	14. $\frac{3}{4}y - 2 < -8$	15. $4x + 13 \ge 5$
16. $2z - 1 > 7$	17. $-5m - 10 < 25$	18. $9y + 4 > -14$
19. $\frac{2m}{-3} - 5 \ge 1$		

p. 87 Lesson 4 – Combinations

1.	2n - 1 = 5 2n - 1 + 1 = 5 + 1 2n + 0 = 6 $\frac{1}{2}(2n) = \frac{1}{2} \cdot 6$ $\frac{2}{2}n = \frac{6}{2}$ $1 \cdot n = 3$ n = 3 $S = \{3\}$	2. $\frac{x}{2} - 6 = 14$ $\frac{x}{2} - 6 + 6 = 14 + 6$ $\frac{x}{2} + 0 = 20$ $\frac{x}{2} = 20$ $\frac{1}{2} \cdot x = 20$ $\frac{2}{1} \cdot \frac{1}{2} \cdot x = \frac{2}{1} \cdot 20$ $\frac{2}{2} \cdot x = 40$ $1 \cdot x = 40$ $x = 40$ $S = \{40\}$	3.	$\frac{r}{4} + 8 = 7$ $\frac{r}{4} + 8 + {}^{-}8 = 7 + {}^{-}8$ $\frac{r}{4} + 0 = {}^{-}1$ $\frac{r}{4} = {}^{-}1$ $\frac{4}{1} \cdot \frac{1}{4} \cdot r = \frac{4}{1} \left({}^{-}1 \right)$ $\frac{4}{4} \cdot r = {}^{-}4$ $1 \cdot r = {}^{-}4$ $r = {}^{-}4$ $S = \left\{ {}^{-}4 \right\}$	4.	3t + 5 = 29 3t + 5 + 5 = 29 + 5 3t + 0 = 24 3t = 24 $\frac{1}{3} \cdot 3t = \frac{1}{3} \cdot 24$ $\frac{3}{3}t = \frac{24}{3}$ $1 \cdot t = 8$ t = 8 $S = \{8\}$
5.	3t + 8 > 20 $3t + 8 + ^{-}8 > 20 + ^{-}8$ 3t + 0 > 12 3t > 12 $\frac{1}{3}(3t) > \frac{1}{3} \cdot 12$ $\frac{3}{3} \cdot t > \frac{12}{3}$ $1 \cdot t > 4$ t > 4 $S = \{t \mid t > 4\}$	6. $4x - 12 < 16$ $4x - 12 + 12 < 16 + 12$ $4x + 0 < 28$ $4x < 28$ $\frac{1}{4}(4x) < \frac{1}{4} \cdot 28$ $\frac{4}{4} \cdot x < \frac{28}{4}$ $1 \cdot x < 7$ $x < 7$ $S = \left\{ x \mid x < 7 \right\}$	7.		8.	$\frac{7x}{9} - 3 \ge 4$ $\frac{7x}{9} - 3 + 3 \ge 4 + 3$ $\frac{7x}{9} + 0 \ge 7$ $\frac{7x}{9} \ge 7$ $\frac{9}{7} - \frac{7}{9} + x \ge \frac{9}{7} + 7$ $1 + x \ge 9$ $x \ge 9$ $S = \left\{ x \mid x \ge 9 \right\}$
9.	5c + 7 < 18 $5c + 7 + ^{-}7 < 18 + ^{-}7$ 5c + 0 < 11 5c < 11 $\frac{1}{5} \cdot 5c < \frac{1}{5} \cdot 11$ $\frac{5}{5} \cdot c < \frac{11}{5}$ $1 \cdot c < \frac{11}{5}$ $c < \frac{11}{5}$ $S = \left\{ c \mid c < \frac{11}{5} \right\}$	10. $2w + 7 \le 1$ $2w + 7 + 7 \le 1 + 7$ $2w + 0 \le 6$ $2w \le 6$ $\frac{1}{2} \cdot 2w \le \frac{1}{2}(-6)$ $\frac{2}{2} \cdot w < \frac{-6}{2}$ $1w \le 3$ $w \le 3$ $S = \{w \mid w \le 3\}$	11.	$\begin{array}{c} -6z - 7 \ge 11 \\ -6z - 7 + 7 \ge 11 + 7 \\ -6z + 0 \ge 18 \\ -6z \ge 18 \\ -\frac{1}{-6} \left(-6 \right) \le -\frac{1}{-6} \left(18 \right) \\ -\frac{-6}{-6} - z \le -\frac{18}{-6} \\ 1 + z \le -3 \\ z \le -3 \\ S = \left\{ z \mid z \le -3 \right\} \end{array}$	12.	$5x + 4 \le ^{-6}$ $5x + 4 + ^{-4} \le ^{-6} + ^{-4}$ $5x + 0 \le ^{-10}$ $5x \le ^{-10}$ $\frac{1}{5}(5x) \le \frac{1}{5}(^{-10})$ $\frac{5}{5}x \le ^{-10}$ $1 \cdot x \le ^{-2}$ $x \le ^{-2}$ $S = \left\{ x \mid x \le ^{-2} \right\}$
13.	$\frac{2}{3}x - 5 < 7$ $\frac{2}{3}x - 5 + 5 < 7 + 5$ $\frac{2}{3}x + 0 < 12$ $\frac{2}{3}x < 12$ $\frac{3}{2} \cdot \frac{2}{3} \cdot x < \frac{3}{2} \cdot 12$ $\frac{6}{6} \cdot x < \frac{36}{2}$ $1 \cdot x < 18$ $x < 18$ $S = \left\{ x \mid x < 18 \right\}$	14. $\frac{3}{4}y - 2 < 8$ $\frac{3}{4}y - 2 + 2 < 8 + 2$ $\frac{3}{4}y + 0 < 6$ $\frac{3}{4}y < 6$ $\frac{4}{3} \cdot \frac{3}{4}y < \frac{4}{3}(-6)$ $\frac{12}{12} \cdot y < \frac{-24}{3}$ $1 \cdot y < 8$ $y < 8$ $S = \left\{ y \mid y < 8 \right\}$	15.	$4x + 13 \ge 5$ $4x + 13 + 13 \ge 5 + 13$ $4x + 0 \ge 8$ $4x \ge 8$ $\frac{1}{4} \cdot 4x \ge \frac{1}{4} - 8$ $\frac{4}{4} \cdot x \ge -\frac{8}{4}$ $1 \cdot x \ge -2$ $x \ge -2$ $S = \left\{ x \mid x \ge -2 \right\}$	16.	2z - 1 > 7 2z - 1 + 1 > 7 + 1 2z + 0 > 8 2z > 8 $\frac{1}{2} \cdot (2z) > \frac{1}{2} \cdot 8$ $\frac{2}{2} \cdot z > \frac{8}{2}$ $1 \cdot z > 4$ z > 4 $S = \{z \mid z > 4\}$

17.	$^{-}5m - 10 < 25$	18.	9y + 4 > 14	19.	$\frac{2m}{-3} - 5 \ge 1$
	5m - 10 + 10 < 25 + 10		9y + 4 + 4 > 14 + 4		$\frac{2m}{-3} - 5 + 5 \ge 1 + 5$
	$^{-}5m + 0 < 35$		9y + 0 > -18		$\frac{-2m}{-3} + 0 \ge 6$
	$^{-}5m < 35$		9y> ⁻ 18		$\frac{2m}{-3} \ge 6$
	$\frac{1}{-5}(-5) > \frac{1}{-5}(35)$		$\frac{1}{9}(9y) > \frac{1}{9}(-18)$		$\frac{2}{-3} \cdot m \ge 6$
	$\frac{-5}{-5} \cdot m > \frac{-35}{-5}$		$\frac{9}{9} \cdot y > \frac{-18}{9}$	-	$\frac{-3}{2} \cdot \frac{2}{-3} \cdot m \le \frac{-3}{2} \cdot 6$
	$1 \cdot m > 7$		$1 \cdot y > 2$		$\frac{-6}{-6} \cdot m \leq \frac{-18}{2}$
	m > 7		y > ~2		$1 \cdot m \leq -9$
			ſ, l		<i>m</i> ≤ [−] 9
	$S = \left\{ m \mid m > 7 \right\}$		$S = \left\{ y \mid y > \overline{2} \right\}$		
	$S = \left\{ m \mid m > T \right\}$				$S = \left\{ m \mid m \le -9 \right\}$

Quiz Form A	Name				
	Class	Date	Score		
Unit II – First Degree Relation Part A – Basic Equations and Lesson 1 – Solution Sta Lesson 2 – First Type – Lesson 3 – Second Type Lesson 4 – Combination	tements Making A e – Makir	and Solutio Zeros			

For each of the following solution statements, give the solution set, using the proper set notation – roster or rule, and using a number line.

1.	w = ⁻ 3	S = {	}	← +-+++++++++++++++++++++++++++++++++++
2.	<i>x</i> = 2	S = {	}	
3.	<i>a</i> > 1	S = {	}	-4 -2 0 2 4 6
4.	<i>m</i> ≤ [−] 2	S = {	}	← +→+→+→+→ -4 -2 0 2 4 6

1

Unit II, Part A, Lessons 1, 2, 3 and 4, Quiz Form A – Continued –

Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5. x + 7 = 156. c - 7 = 127. w - 4 > 78. 4x = 129. -3n = -1510. 3n < 3011. $-4y \ge 12$ 12. 3x - 1 = 1713. $\frac{4}{3}m + 1 < 25$

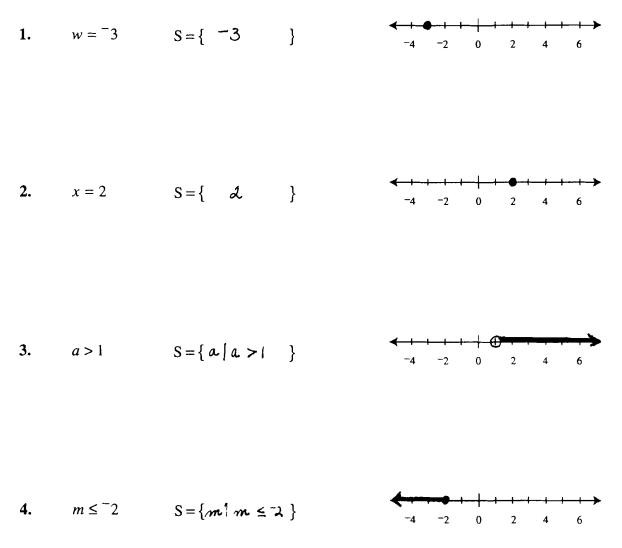
Quiz Form B	Name		
	Class	Date	Score
Unit II – First Degree	Relations with On	e Placeholde	er
Part A – Basic Equati			-
Lesson 1 - Soluti	on Statements	and Soluti	ion Sets
Lesson 2 - First 1	Type - Making 2	Zeros	

Lesson 3 - Second Type - Making Ones

Lesson 4 - Combinations

For each of the following solution statements, give the solution set, using the proper set notation – roster or rule, and using a number line.

1.	$y \ge -4$	S = {	}	← + + + + + + + + + + + + + + + + + + +
2.	<i>b</i> < 0	S = {	}	← + + + + + + + + + + + + + + + + + + +
3.	<i>x</i> = 3	S = {	}	← + + + + + + + + + + + + + + + + + + +
4.	<i>a</i> = ⁻ 1	S = {	}	← + - + + + + + + + + + + + + + + + + +


Unit II, Part A, Lessons 1, 2, 3 and 4, Quiz Form B – Continued –

Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5.	5a = 30	6.	x + 9 = 15	7.	$^{-}3m < 15$
8.	m-9=30	9.	$^{-}4y = ^{-}28$	10.	5x + 2 = 32
					5
11.	f - 5 < -8	12.	5x > 60	13.	$\frac{5}{2}n+1 \ge 26$

Quiz Form A	Name		
	Class	Date	Score
Unit II – First Degree Part A – Basic Equat	Relations with Or	le Placeholde	r
Lesson 1 - Soluti			on Sets
Lesson 2 - First			
Lesson 3 - Secon	nd Type - Makir	ng Ones	
Lesson 4 - Comb	inations		

For each of the following solution statements, give the solution set, using the proper set notation – roster or rule, and using a number line.

1

Unit II, Part A, Lessons 1, 2, 3 and 4, Quiz Form A – Continued –

Find the solution(s) for each of the following open sentences. Express your answer using set notation.

5.
$$x+7=15$$

 $x+7+7=15+77$
 $x+0=8$
 $X = 8$
 $S = \{8\}$
6. $c-7=12$
 $c-7+7=12+77$
 $c+0 = 19$
 $S = \{19\}$
7. $w-4 > ^{-7}$
 $w-4 + 4 > ^{-7}$
 $w-4 + 4 > ^{-7}$
 $w+0 > ^{-3}$
 $w > ^{-3}$
 $S = \{19\}$
 $S = \{19\}$
 $S = \{10\}$
 $S =$

8.
$$4x = 12$$

 $\frac{1}{4}(4x) = \frac{1}{4}(12)$
 $\frac{1}{4}(4x) = \frac{1}{4}(12)$
 $\frac{1}{3}(-3n) = \frac{1}{3}(-15)$
 $10. 3n < 30$
 $\frac{1}{3}(3n) < \frac{1}{3}(30)$
 $\frac{1}{3}(3n) < \frac{1}{3}(30)$
 $\frac{1}{3}(3n) < \frac{1}{3}(30)$
 $\frac{1}{3}(3n) < \frac{1}{3}(30)$
 $\frac{3}{3}n < \frac{30}{3}$
 $1n < 10$
 $n = 5$
 $5 = \{3\}$
 $5 = \{5\}$
 $5 = \{5\}$
 $5 = \{n | n < 10\}$

11.
$$-4y \ge 12$$

 $\frac{1}{-4}(-4y) \stackrel{.}{} \stackrel{.}{} \frac{1}{-4}(12)$
 $\frac{-4}{-4}y \stackrel{.}{} \stackrel{.}{} \frac{1}{-4}(12)$
 $\frac{3x-1+1}{3x+0} = 18$
 $\frac{3x+0}{3x+0} = 18$
 $13. \frac{4}{3}m+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1+1<25$
 $\frac{4}{3}m+1-1<25$
 $\frac{4}{3}m+1-1$
 $\frac{4}{3}m+1-1<25$
 $\frac{4}{3}m+1-1$
 $\frac{4}{3}m+1-1$
 $\frac{4}{3}m+1-1$
 $\frac{4}{3}m+1-1$

Quiz Form B	Name			
	Class	Score		
Unit II – First Degree Relations with One Placeholder				

Part A – Basic Equations and Inequalities Lesson 1 – Solution Statements and Solution Sets Lesson 2 – First Type – Making Zeros Lesson 3 – Second Type – Making Ones Lesson 4 – Combinations

For each of the following solution statements, give the solution set, using the proper set notation – roster or rule, and using a number line.

1. $y \ge -4$ $S = \{y \mid y \ge -4\}$ -4 -2 0 2 4 $b < 0 \qquad S = \{ f \mid f < 0 \}$ 2. 0 2 4 -2 6 3. x = 3 $S = \{ 3 \}$ -4 -2 0 2 4 6 4. a = 1 $S = \{ -1 \}$ -2 0 2 4 6

Unit II, Part A, Lessons 1, 2, 3 and 4, Quiz Form B – Continued –

Find the **solution**(s) for each of the following open sentences. Express your answer using set notation.

5. $5a = 30$ $\frac{1}{5}(5a) = \frac{1}{5}(30)$ $\frac{5}{5}a = \frac{30}{5}$ 1a = 6 a = 6 $5 = \frac{26}{5}$	6. $x+9=15$ x+9+-9=15+-9 x+0=6 x=6 $S=\xi_{6}\xi$	7. $-3m < 15$ $\frac{1}{-3}(-3m) > \frac{1}{-3}(15)$ $\frac{-3}{-3}m > \frac{15}{-3}$ 1m > -5 m > -5 $S = \{m \mid m > -5\}$
8. $m-9=30$ m-9+9=30+9 m+0=39 m=39 $5=\frac{2}{39}$	9. $-4y = -28$ $-\frac{1}{4}(-4y) = \frac{1}{-4}(-28)$ $-\frac{4}{-4}y = -\frac{28}{-4}$ 1y = 7 y = 7 $5 = \{7\}$	10. $5x + 2 = 32$ 5x + 2 + -2 = 32 + -2 5x + 0 = 30 5x = 30 $\frac{1}{5}(5x) = \frac{1}{5}(30)$ $\frac{5}{5}x = \frac{30}{5}$ 1x = 6 x = 6 $5 = \frac{3}{5}6\frac{5}{5}$
11. $f-5 < -8$ f -5 + 5 < -8 + 5 f + 0 < -3 f < -3 $S = \{f f < -3\}$	12. $5x > 60$ $\frac{1}{5}(5x) > \frac{1}{5}(60)$ $\frac{5}{5}x > \frac{60}{5}$ 1x > 12 x > 12 $5 = \frac{2}{5}x x > 12\frac{5}{5}$	13. $\frac{5}{2}n+1 \ge 26$ $\frac{5}{2}n+1+-1 \ge 26+-1$ $\frac{5}{2}n+0 \ge 25$ $\frac{5}{2}n \ge 25$ $\frac{5}{2}(\frac{5}{2}n) \ge \frac{1}{5}(25)$ $\frac{10}{10}n \ge \frac{50}{5}$ $\ln \ge 10$ $n \ge 10$ $5=\frac{5}{2}n n \ge 10\frac{5}{5}$